Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Nutrients ; 16(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38201989

RESUMO

In the context of nutrient-driven epigenetic alterations, food-derived miRNAs can be absorbed into the circulatory system and organs of recipients, especially humans, and potentially contribute to modulating health and diseases. Evidence suggests that food uptake, by carrying exogenous miRNAs (xenomiRNAs), regulates the individual miRNA profile, modifying the redox homeostasis and inflammatory conditions underlying pathological processes, such as type 2 diabetes mellitus, insulin resistance, metabolic syndrome, and cancer. The capacity of diet to control miRNA levels and the comprehension of the unique characteristics of dietary miRNAs in terms of gene expression regulation show important perspectives as a strategy to control disease susceptibility via epigenetic modifications and refine the clinical outcomes. However, the absorption, stability, availability, and epigenetic roles of dietary miRNAs are intriguing and currently the subject of intense debate; additionally, there is restricted knowledge of their physiological and potential side effects. Within this framework, we provided up-to-date and comprehensive knowledge on dietary miRNAs' potential, discussing the latest advances and controversial issues related to the role of miRNAs in human health and disease as modulators of chronic syndromes.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Humanos , Diabetes Mellitus Tipo 2/genética , Estado Nutricional , Dieta , Epigênese Genética , MicroRNAs/genética
2.
Cancers (Basel) ; 15(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686618

RESUMO

Ferroptosis, an iron-dependent form of cell death, and dysregulated microRNA (miRNA) expression correlate with colorectal cancer (CRC) development and progression. The tumor suppressor ability of miR-148a-3p has been reported for several cancers. Nevertheless, the role of miR-148a-3p in CRC remains largely undetermined. Here, we aim at investigating the molecular mechanisms and regulatory targets of miR-148a-3p in the CRC cell death mechanism(s). To this end, miR-148a-3p expression was evaluated in SW480 and SW620 cells and normal colon epithelial CCD 841 CoN cells with quantitative real-time polymerase chain reaction (qRT-PCR). Data reported a reduction of miR-148a-3p expression in SW480 and SW620 cells compared to non-tumor cells (p < 0.05). Overexpression of miR-148a selectively inhibited CRC cell viability (p < 0.001), while weakly affecting normal CCD 841 CoN cell survival (p < 0.05). At the cellular level, miR-148a-3p mimics promoted apoptotic cell death via caspase-3 activation (p < 0.001), accumulation of mitochondrial reactive oxygen species (ROS) (p < 0.001), and membrane depolarization (p < 0.001). Moreover, miR-148a-3p overexpression induced lipid peroxidation (p < 0.01), GPX4 downregulation (p < 0.01), and ferroptosis (p < 0.01), as revealed by intracellular and mitochondrial iron accumulation and ACSL4/TFRC/Ferritin modulation. In addition, levels of SLC7A11 mRNA and protein, the cellular targets of miR-148a-3p predicted by bioinformatic tools, were suppressed by miR-148a-3p's overexpression. On the contrary, the downregulation of miR-148a-3p boosted SLC7A11 gene expression and suppressed ferroptosis. Together, these in vitro findings reveal that miR-148a-3p can function as a tumor suppressor in CRC by targeting SLC7A11 and activating ferroptosis, opening new perspectives for the rationale of therapeutic strategies through targeting the miR-148a-3p/SLC7A11 pathway.

3.
Cell Commun Signal ; 21(1): 245, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730576

RESUMO

BACKGROUND: Several studies show that natural foods are a source of compounds with anticancer properties that affect the gut microbiota and its metabolites. In the present study, we investigate the effect of a delactosed buffalo milk whey by-product (DMW) on colorectal carcinogenesis. METHODS: The effect of DMW on colorectal carcinoma (CRC) was investigated in the established mouse model of azoxymethane (AOM)-induced colon carcinoma, which closely resembles the human clinical condition of CRC. The effect of DMW on CRC immortalized cell lines was also evaluated to further identify the antineoplastic mechanism of action. RESULTS: Pretreatment of AOM-treated mice with DMW significantly (P < 0.05) reduced the percentage of mice bearing both aberrant crypt foci with more than four crypts (which are early precancerous lesions that progress to CRC) and tumors. In addition, DMW completely counteracted the effect of AOM on protein expression of caspase-9, cleaved caspase-3 and poly ADP-ribose polymerase in colonic tissue. Administration of DMW alone (i.e. without AOM) resulted in changes in the composition of the gut microbiota, leading to enrichment or depletion of genera associated with health and disease, respectively. DMW was also able to restore AOM-induced changes in specific genera of the gut microbiota. Specifically, DMW reduced the genera Atopobiaceae, Ruminococcus 1 and Lachnospiraceae XPB1014 and increased the genera Parabacteroides and Candidatus Saccharimonas, which were increased and reduced, respectively, by AOM. Blood levels of butyric acid and cancer diagnostic markers (5-methylcytidine and glycerophosphocholine), which were increased by AOM treatment, were reduced by DMW. Furthermore, DMW exerted cytotoxic effects on two human CRC cell lines (HCT116 and HT29) and these effects were associated with the induction of apoptotic signaling. CONCLUSIONS: Our results suggest that DMW exerts chemopreventive effects and restores the gut microbiota in AOM-induced CRC, and induces cytotoxic effect on CRC cells. DMW could be an important dietary supplement to support a healthy gut microbiota and reduce the prevalence of CRC in humans. Video Abstract.


Assuntos
Neoplasias Colorretais , Soro do Leite , Humanos , Animais , Camundongos , Búfalos , Leite , Carcinogênese , Neoplasias Colorretais/tratamento farmacológico , Azoximetano/toxicidade , Ácido Butírico
4.
Cell Mol Biol Lett ; 28(1): 66, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587410

RESUMO

BACKGROUND: Endothelial dysfunction and deregulated microRNAs (miRNAs) participate in the development of sepsis and are associated with septic organ failure and death. Here, we explored the role of miR-15b-5p on inflammatory pathways in lipopolysaccharide (LPS)-treated human endothelial cells, HUVEC and TeloHAEC. METHODS: The miR-15b-5p levels were evaluated in LPS-stimulated HUVEC and TeloHAEC cells by quantitative real-time PCR (qRT-PCR). Functional experiments using cell counting kit-8 (CCK-8), transfection with antagomir, and enzyme-linked immunosorbent assays (ELISA) were conducted, along with investigation of pyroptosis, apoptosis, autophagy, and mitochondrial reactive oxygen species (ROS) by cytofluorometric analysis and verified by fluorescence microscopy. Sirtuin 4 (SIRT4) levels were detected by ELISA and immunoblotting, while proprotein convertase subtilisin-kexin type 9 (PCSK9) expression was determined by flow cytometry (FACS) and immunofluorescence analyses. Dual-luciferase reporter evaluation was performed to confirm the miR-15b-5p-SIRT4 interaction. RESULTS: The results showed a correlation among miR-15b-5p, PCSK9, and SIRT4 levels in septic HUVEC and TeloHAEC. Inhibition of miR-15b-5p upregulated SIRT4 content, alleviated sepsis-related inflammatory pathways, attenuated mitochondrial stress, and prevented apoptosis, pyroptosis, and autophagic mechanisms. Finally, a PCSK9 inhibitor (i-PCSK9) was used to analyze the involvement of PCSK9 in septic endothelial injury. i-PCSK9 treatment increased SIRT4 protein levels, opposed the septic inflammatory cascade leading to pyroptosis and autophagy, and strengthened the protective role of miR-15b-5p inhibition. Increased luciferase signal validated the miR-15b-5p-SIRT4 binding. CONCLUSIONS: Our in vitro findings suggested the miR-15b-5p-SIRT4 axis as a suitable target for LPS-induced inflammatory pathways occurring in sepsis, and provide additional knowledge on the beneficial effect of i-PCSK9 in preventing vascular damage by targeting SIRT4.


Assuntos
Células Endoteliais , MicroRNAs , Pró-Proteína Convertase 9 , Sirtuínas , Humanos , Antagomirs , Células Endoteliais/patologia , Lipopolissacarídeos , Proteínas Mitocondriais , Sirtuínas/genética
5.
Atherosclerosis ; 378: 117180, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422356

RESUMO

BACKGROUND AND AIMS: Preclinical evidence suggests that proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors hold anti-inflammatory properties independently of their ability to lower LDL-cholesterol (C). However, whether PCSK9 inhibitors exert anti-inflammatory effects within the atherosclerotic plaque in humans is unknown. We explored the impact of PCSK9 inhibitors, used as monotherapy, compared with other lipid-lowering drugs (oLLD) on the expression of inflammatory markers within the plaque, assessing also the subsequent incidence of cardiovascular events. METHODS: In an observational study, we recruited 645 patients on stable therapy for at least six months and undergoing carotid endarterectomy, categorizing patients according to the use of PCSK9 inhibitors only (n = 159) or oLLD (n = 486). We evaluated the expression of NLRP3, caspase-1, IL-1ß, TNFα, NF-kB, PCSK9, SIRT3, CD68, MMP-9, and collagen within the plaques in the two groups through immunohistochemistry, ELISA, or immunoblot. A composite outcome including non-fatal myocardial infarction, non-fatal stroke, and all-cause mortality was assessed during a 678 ± 120 days follow-up after the procedure. RESULTS: Patients treated with PCSK9 inhibitors had a lower expression of pro-inflammatory proteins and a higher abundance of SIRT3 and collagen within the plaque, a result obtained despite comparable levels of circulating hs-CRP and observed also in LDL-C-matched subgroups with LDL-C levels <100 mg/dL. Patients treated with PCSK9 inhibitors showed a decreased risk of developing the outcome compared with patients on oLLD, also after adjustment for multiple variables including LDL-C (adjusted hazard ratio 0.262; 95% CI 0.131-0.524; p < 0.001). The expression of PCSK9 correlated positively with that of pro-inflammatory proteins, which burden was associated with a higher risk of developing the outcome, independently of the therapeutic regimen. CONCLUSIONS: The use of PCSK9 inhibitors is accompanied by a beneficial remodelling of the inflammatory burden within the human atheroma, an effect possibly or partly independent of their LDL-C lowering ability. This phenomenon might provide an additional cardiovascular benefit.


Assuntos
Anticolesterolemiantes , Aterosclerose , Placa Aterosclerótica , Sirtuína 3 , Humanos , Placa Aterosclerótica/tratamento farmacológico , Pró-Proteína Convertase 9/metabolismo , Inibidores de PCSK9 , LDL-Colesterol , Aterosclerose/tratamento farmacológico , Anti-Inflamatórios/efeitos adversos , Anticolesterolemiantes/uso terapêutico
6.
Antioxidants (Basel) ; 12(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37372041

RESUMO

Endothelial dysfunction plays a critical role in the progression of type 2 diabetes mellitus (T2DM), leading to cardiovascular complications. Current preventive antioxidant strategies to reduce oxidative stress and improve mitochondrial function in T2DM highlight dietary interventions as a promising approach, stimulating the deepening of knowledge of food sources rich in bioactive components. Whey (WH), a dairy by-product with a considerable content of bioactive compounds (betaines and acylcarnitines), modulates cancer cell metabolism by acting on mitochondrial energy metabolism. Here, we aimed at covering the lack of knowledge on the possible effect of WH on the mitochondrial function in T2DM. The results showed that WH improved human endothelial cell (TeloHAEC) function during the in vitro diabetic condition mimicked by treating cells with palmitic acid (PA) (0.1 mM) and high glucose (HG) (30 mM). Of note, WH protected endothelial cells from PA+HG-induced cytotoxicity (p < 0.01) and prevented cell cycle arrest, apoptotic cell death, redox imbalance, and metabolic alteration (p < 0.01). Moreover, WH counteracted mitochondrial injury and restored SIRT3 levels (p < 0.01). The SiRNA-mediated suppression of SIRT3 abolished the protective effects exerted by WH on the mitochondrial and metabolic impairment caused by PA+HG. These in vitro results reveal the efficacy of whey as a redox and metabolic modulator in the diabetic state and pave the way for future studies to consider whey as the source of dietary bioactive molecules with health benefits in preventive strategies against chronic diseases.

7.
Mol Ther Nucleic Acids ; 32: 371-384, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37128277

RESUMO

Micro-RNAs (miRNAs) control gene expression at the post-transcriptional level and are widely involved in carcinogenesis, playing a role as both oncogenes and tumor suppressors. MiRNAs act as potent therapeutic weapon in cancer, but their potential therapeutic use is limited by the off-target effect due to their nonspecific distribution in normal tissues. The encapsulation of miRNAs in nanostructured carriers allows targeted effects aimed to destroy cancer cells, without affecting healthy tissues. Due to their small size and the optimal surface/size ratio, nanoparticles (NPs) envelop, protect, and release miRNAs, representing a promising strategy in cancer treatment. In the present review, we discuss the latest advances in the field of miRNA-encapsulating NPs in cancer, focusing on colorectal cancer and its metastatic forms, one of the most common malignancies worldwide.

8.
Redox Biol ; 62: 102681, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37003179

RESUMO

MiR-27b is highly expressed in endothelial cells (EC) but its function in this context is poorly characterized. This study aims to investigate the effect of miR-27b on inflammatory pathways, cell cycle, apoptosis, and mitochondrial oxidative imbalances in immortalized human aortic endothelial cells (teloHAEC), human umbilical vein endothelial cells (HUVEC), and human coronary artery endothelial cells (HCAEC) exposed to TNF-α. Treatment with TNF-α downregulates the expression of miR-27b in all EC lines, promotes the activation of inflammatory pathways, induces mitochondrial alteration and reactive oxygen species accumulation, fostering the induction of intrinsic apoptosis. Moreover, miR-27b mimic counteracts the TNF-α-related cytotoxicity and inflammation, as well as cell cycle arrest and caspase-3-dependent apoptosis, restoring mitochondria redox state, function, and membrane polarization. Mechanistically, hsa-miR-27b-3p targets the 3'untranslated regions of FOXO1 mRNA to downregulate its expression, blunting the activation of the Akt/FOXO1 pathway. Here, we show that miR-27b is involved in the regulation of a broad range of functionally intertwined phenomena in EC, suggesting its key role in mitigating mithochondrial oxidative stress and inflammation, most likely through targeting of FOXO1. Overall, results reveal for the first time that miR-27b could represent a possible target for future therapies aimed at improving endothelial health.


Assuntos
Células Endoteliais da Veia Umbilical Humana , MicroRNAs , Estresse Oxidativo , Humanos , Apoptose/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
9.
Eur J Intern Med ; 113: 57-68, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37062642

RESUMO

OBJECTIVES: To evaluate the expression of sodium-glucose transporter 2 (SGLT2), inflammatory cytokines, and sirtuins in breast fat tissue at baseline, and serum cytokines of fatty vs. non-fatty pre-menopausal women at baseline, and at 12 months of follow-up. To correlate SGLT2/cytokines/sirtuins expression to clinical variables, and their changes (Δ) at follow-up, as intima-media wall thickness (IMT), left ventricle mass (LVM), left ventricle ejection fraction (LVEF), and myocardial performance index (MPI), and its normalization. BACKGROUND: Pre-menopausal women with the lowest breast fat density (fatty breast) vs. higher breast fat density (non-fatty breast) are a high-risk population for cardiovascular diseases and worse prognosis. METHODS: We analyzed SGLT2/cytokines/sirtuins of excised fatty breasts of fatty vs. non-fatty pre-menopausal women. We correlated SGLT2/cytokines/sirtuins to Δ IMT, Δ LVM, Δ LVEF, and Δ MPI, and normal cardiac performance (NCP) at 1 year of follow-up. RESULTS: fatty vs. non-fatty breast over-expressed SGLT2/inflammatory cytokines, with lowest values of sirtuins (p<0.05). We found a direct correlation between SGLT2 (R2 0.745), TNFα (R2 0.262), and ΔMPI (p<0.05), and an inverse correlation between breast density (R2 -0.198), SIRT-3 (R2-0.181), and ΔMPI (p<0.05). Fatty breast (0.761, CI 95% [0.101-0.915]), SGLT2 (0.812, CI 95% [0.674-0.978]) and SIRT-3 (1.945, CI 95% [1.201-3.148]) predicted NCP at 1 year of follow-up. CONCLUSIONS: fatty vs. non-fatty breast women over-expressed SGLT2/inflammatory cytokines, and down-regulated breast sirtuins. SGLT2/inflammatory cytokines expression and inversely the tissue sirtuin 3 (tSIRT3) and breast percentage density linked to ΔMPI at 1 year of follow-up. Fatty breast and SGLT2 inversely predicted NCP; SIRT-3 increased the probability of NCP at 1 year of follow-up.


Assuntos
Inflamação , Sirtuínas , Humanos , Feminino , Transportador 2 de Glucose-Sódio/metabolismo , Regulação para Baixo , Sirtuínas/genética , Sirtuínas/metabolismo , Menopausa , Citocinas/metabolismo
10.
BMC Genomics ; 24(1): 133, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941576

RESUMO

BACKGROUND: Green feed diet in ruminants exerts a beneficial effect on rumen metabolism and enhances the content of milk nutraceutical quality. At present, a comprehensive analysis focused on the identification of genes, and therefore, biological processes modulated by the green feed in buffalo rumen has never been reported. We performed RNA-sequencing in the rumen of buffaloes fed a total mixed ration (TMR) + the inclusion of 30% of ryegrass green feed (treated) or TMR (control), and identified differentially expressed genes (DEGs) using EdgeR and NOISeq tools. RESULTS: We found 155 DEGs using EdgeR (p-values < 0.05) and 61 DEGs using NOISeq (prob ≥0.8), 30 of which are shared. The rt-qPCR validation suggested a higher reliability of EdgeR results as compared with NOISeq data, in our biological context. Gene Ontology analysis of DEGs identified using EdgeR revealed that green feed modulates biological processes relevant for the rumen physiology and, then, health and well-being of buffaloes, such as lipid metabolism, response to the oxidative stress, immune response, and muscle structure and function. Accordingly, we found: (i) up-regulation of HSD17B13, LOC102410803 (or PSAT1) and HYKK, and down-regulation of CDO1, SELENBP1 and PEMT, encoding factors involved in energy, lipid and amino acid metabolism; (ii) enhanced expression of SIM2 and TRIM14, whose products are implicated in the immune response and defense against infections, and reduced expression of LOC112585166 (or SAAL1), ROR2, SMOC2, and S100A11, encoding pro-inflammatory factors; (iii) up-regulation of NUDT18, DNAJA4 and HSF4, whose products counteract stressful conditions, and down-regulation of LOC102396388 (or UGT1A9) and LOC102413340 (or MRP4/ABCC4), encoding detoxifying factors; (iv) increased expression of KCNK10, CACNG4, and ATP2B4, encoding proteins modulating Ca2+ homeostasis, and reduced expression of the cytoskeleton-related MYH11 and DES. CONCLUSION: Although statistically unpowered, this study suggests that green feed modulates the expression of genes involved in biological processes relevant for rumen functionality and physiology, and thus, for welfare and quality production in Italian Mediterranean dairy buffaloes. These findings, that need to be further confirmed through the validation of additional DEGs, allow to speculate a role of green feed in the production of nutraceutical molecules, whose levels might be enhanced also in milk.


Assuntos
Búfalos , Transcriptoma , Animais , Feminino , Búfalos/genética , Ração Animal/análise , Reprodutibilidade dos Testes , Dieta/veterinária , Leite/metabolismo , Rúmen/metabolismo , Lactação , Fermentação
11.
BMC Med ; 21(1): 71, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829203

RESUMO

BACKGROUND: No study evaluated the incidence of intra-stent restenosis (ISR)-related events in patients with type 2 diabetes (T2DM) and acute myocardial infarction (AMI) treated or not with sodium/glucose cotransporter 2 inhibitors (SGLT2i). METHODS: We recruited 377 patients with T2DM and AMI undergoing percutaneous coronary intervention (PCI). Among them, 177 T2DM were treated with SGLT2 inhibitors before PCI. The primary outcome was major adverse cardiovascular events (MACE) defined as cardiac death, re-infarction, and heart failure related to ISR. In patients without ISR, minimal lumen area and minimal lumen diameter were assessed by coronary CT-angiography at 1-year follow-up. RESULTS: Glycemic control was similar in SGLT2i-treated patients and never SGLT2i-users. The incidence of ISR-related MACE was higher in never SGLT2i-users compared with SGLT2i-treated patients, an effect independent of glycemic status (HR = 0.418, 95% CI = 0.241-0.725, P = 0.002) and observed also in the subgroup of patients with HbA1c < 7% (HR = 0.393, 95% CI = 0.157-0.984, P = 0.027). In patients without the event, the stent patency was greater in SGLT2i-treated patients compared with never SGLT2i-users at 1-year follow-up. CONCLUSIONS: SGLT2i treatment in T2DM is associated with a reduced incidence of ISR-related events, independently of glycemic control.


Assuntos
Reestenose Coronária , Diabetes Mellitus Tipo 2 , Infarto do Miocárdio , Intervenção Coronária Percutânea , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Diabetes Mellitus Tipo 2/complicações , Intervenção Coronária Percutânea/efeitos adversos , Reestenose Coronária/complicações , Reestenose Coronária/terapia , Infarto do Miocárdio/complicações , Resultado do Tratamento , Fatores de Risco
12.
Theranostics ; 13(2): 531-542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632236

RESUMO

Background: Proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors (i) are a class of lipid-lowering drugs suggested to hold a plethora of beneficial effects independent of their LDL cholesterol-lowering properties. However, the mechanism underlying such observations is debated. Methods: Human aortic endothelial cells (TeloHAEC) were pre-treated with 100 µg/mL of the PCSK9i evolocumab and then exposed to 20 ng/mL of IL-6, a major driver of cardiovascular diseases (CVD), in both naïve state and after siRNA-mediated suppression of the NAD-dependent deacetylase sirtuin-3 (SIRT3). Inflammation, autophagy, and oxidative stress were assessed through Western Blots, ELISAs, and/or immunofluorescence coupled by flow cytometry. To explore the human relevance of the findings, we also evaluated the expression of IL-6, SIRT3, IL-1ß, the ratio LC3B II/I, and PCSK9 within the plaques of patients undergoing carotid endarterectomy (n=277), testing possible correlations between these proteins. Results: PCSK9i improved a range of phenotypes including the activation of inflammatory pathways, oxidative stress, and autophagy. Indeed, treatment with PCSK9i was able to counteract the IL-6 induced increase in inflammasome activation, the accrual of autophagic cells, and mitochondrial ROS accumulation. Of note, silencing of SIRT3 reverted the beneficial effects observed with PCSK9i treatment on all these phenomena. In atheroma specimens, the expression of PCSK9 was inversely related to that of SIRT3 while positively correlating with IL-6, IL-1ß, and the ratio LC3B II/I. Conclusions: Overall, these data suggest that PCSK9i bear intrinsic anti-inflammatory, anti-autophagic, and antioxidant properties in endothelial cells, and that these pleiotropic effects might be mediated, at least in part, by SIRT3. These results provide an additional mechanism supporting the emerging knowledge relative to the benefit of PCSK9i on CVD beyond LDL-lowering and uncover SIRT3 as a putative mediator of such pleiotropy.


Assuntos
Autofagia , Doenças Cardiovasculares , Estresse Oxidativo , Inibidores de PCSK9 , Sirtuína 3 , Humanos , Autofagia/efeitos dos fármacos , Células Endoteliais/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Inibidores de PCSK9/farmacologia , Inibidores de PCSK9/uso terapêutico , Pró-Proteína Convertase 9/metabolismo , Sirtuína 3/metabolismo
13.
Compr Rev Food Sci Food Saf ; 22(1): 408-429, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36469036

RESUMO

This review provides the current laboratory criteria for the detection and evaluation of the possible causes of alteration of non-concentrated industrial derivatives of tomatoes (peeled tomatoes, pulps, purees, sauces, and fillets), packaged in coated or uncoated tinplate cans. We discuss how the product alterations are typically the consequence of technological errors either in the can production, or in the storage process, or in the product sterilization. The described procedures include the quantitative determination of the distribution of gases (H2 , CO2 , N2 , and O2 ) present in the headspace of the container. The gas composition and ratios can be used as markers to allow easy diagnosis of the causes of microbiologic and/or physical-chemical alterations of the tomatoes, which are usually made evident by swelling of the containers. These tests should be integrated by microbiological analyses aimed at a restricted group of microorganisms, with the chemical analysis of the container and the chemical analysis of the altered product. By way of example, we report the assessment of the causes of alteration in four different case-studies.


Assuntos
Solanum lycopersicum , Conservação de Alimentos/métodos , Embalagem de Alimentos , Contaminação de Alimentos/análise , Alimentos
14.
Nutrients ; 14(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501111

RESUMO

The relationship between dietary constituents and the onset and prevention of colorectal cancer (CRC) is constantly growing. Recently, the antineoplastic profiles of milk and whey from Mediterranean buffalo (Bubalus bubalis) have been brought to attention. However, to date, compared to cow milk, the potential health benefits of buffalo milk exosome-miRNA are still little explored. In the present study, we profiled the exosomal miRNA from buffalo milk and investigated the possible anticancer effects in CRC cells, HCT116, and HT-29. Results indicated that buffalo milk exosomes contained higher levels of miR-27b, miR-15b, and miR-148a compared to cow milk. Mimic miR-27b transfection in CRC cells induced higher cytotoxic effects (p < 0.01) compared to miR-15b and miR-148a. Moreover, miR-27b overexpression in HCT116 and HT-29 cells (miR-27b+) induced apoptosis, mitochondrial reactive oxygen species (ROS), and lysosome accumulation. Exposure of miR-27b+ cells to the bioactive 3kDa milk extract aggravated the apoptosis rate (p < 0.01), mitochondrial stress (p < 0.01), and advanced endoplasmic reticulum (ER) stress (p < 0.01), via PERK/IRE1/XBP1 and CHOP protein modulation (p < 0.01). Moreover, GSK2606414, the ER-inhibitor (ER-i), decreased the apoptosis phenomenon and XBP1 and CHOP modulation in miR-27b+ cells treated with milk (p < 0.01 vs. miR-27b++Milk), suggesting the ER stress as a cell-death-aggravating mechanism. These results support the in vitro anticancer activity of 3kDa milk extract and unveil the contribution of miR-27b in the promising beneficial effect of buffalo milk in CRC prevention.


Assuntos
Antineoplásicos , Neoplasias Colorretais , MicroRNAs , Animais , Feminino , Bovinos , Leite/metabolismo , Estresse do Retículo Endoplasmático , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose , Antineoplásicos/farmacologia , Búfalos/genética , Búfalos/metabolismo , Neoplasias Colorretais/genética , Extratos Vegetais/farmacologia
15.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232386

RESUMO

In the present study, we aimed at assessing the influence of breed and feeding system on the bovine milk profile of betaines and carnitines and milk capacity in counteracting the inflammatory endothelial cell (EC) damage induced by interleukin (IL)-6. In the first experimental design, two breeds were chosen (Holstein vs. Modicana) to investigate the biomolecule content and antioxidant capacity in milk and dairy products. In the second experimental design, two feeding systems (pasture vs. total mixed ratio) were tested only in Holstein to evaluate the possible effect on the functional profile of milk and dairy products. Finally, the bulk milk from the two experimental designs was used to evaluate the efficacy of preventing IL-6-induced endothelial inflammatory damage. Results showed that Modicana milk and whey had higher biomolecule content and antioxidant activity compared to Holstein milk (p < 0.01). Milk from Holstein fed TMR showed higher concentration of γ-butyrobetaine, δ-valerobetaine (p < 0.01), and l-carnitine (p < 0.05). Similarly, whey from Holstein fed TMR also showed higher content of δ-valerobetaine, glycine betaine, l-carnitine, and acetyl-l-carnitine (p < 0.01) compared to the Holstein fed pasture. Conversely, the antioxidant activity of milk and dairy products was not affected by the feeding system. In ECs, all milk samples reduced the IL-6-induced cytokine release, as well as the accumulation of reactive oxygen species (ROS) and the induction of cell death, with the most robust effect elicited by Modicana milk (p < 0.01). Overall, Modicana milk showed a higher content of biomolecules and antioxidant activity compared to Holstein, suggesting that the breed, more than the feeding system, can positively affect the health-promoting profile of dairy cattle milk.


Assuntos
Antioxidantes , Leite , Acetilcarnitina/metabolismo , Ração Animal , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Betaína/metabolismo , Carnitina/metabolismo , Bovinos , Dieta , Feminino , Interleucina-6/metabolismo , Lactação/fisiologia , Leite/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas do Soro do Leite/metabolismo
16.
Pharmacol Res ; 184: 106448, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36096423

RESUMO

This study aimed at investigating the SGLT2 expression in human cardiomyocytes. Human studies evaluating cardiomyocyte SGLT2s expression are limited. To better clarify this issue, SGLT2 protein expression was assessed in human hearts of diabetic and non-diabetic patients, and in AC16 human cardiomyocyte cell line. A prospective study with a follow-up of patients who underwent their first heart transplant (HTX) was performed. Explanted heart, basal (1 week after HTX), and final (48 weeks after HTX) endomyocardial biopsies (EMBs) from patients were evaluated for SGLT2 occurrence in cardiomyocyte with immunohistochemistry, immunofluorescence and SGLT2 quantization with both real-time reverse transcription-polymerase chain reaction and Western blot analysis. The immunofluorescence co-localization of SGLT2 in cardiomyocyte evidenced that an increased expression in the explanted heart from diabetic patients compared to non-diabetic (p < 0.001). In all final EMBs from diabetic patients, the expression of SGLT2 in cardiomyocyte was increased compared to non-diabetic (p < 0.01). This evidence was confirmed by Western blot analysis of SGLT2 protein. In addition, PCR analysis revealed very low mRNA levels in basal EMBs from diabetic and non-diabetic patients (p = NS), whereas final EMBs from diabetic patients showed higher SGLT2 mRNA levels in diabetic compared to non-diabetic patients (p < 0.05). Cultured human cardiomyocytes exposed to high-glucose showed increased expression of SGLT2 protein compared to cells exposed to normal glucose (p < 0.05). The presence of SGLT2 in cardiomyocytes supports the hypothesis of SGLT2i-mediated impact on metabolic pathways within cardiomyocytes. Moreover, metabolic disorders linked to diabetes may lead promptly to upregulation of SGLT2 levels in human cardiomyocytes.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Diabetes Mellitus/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Estudos Prospectivos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sódio/metabolismo , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/metabolismo
17.
Cardiovasc Diabetol ; 21(1): 146, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35932065

RESUMO

BACKGROUND: High glycated-hemoglobin (HbA1c) levels correlated with an elevated risk of adverse cardiovascular outcomes despite renin-angiotensin system (RAS) inhibition in type-2 diabetic (T2DM) patients with reduced ejection fraction. Using the routine biopsies of non-T2DM heart transplanted (HTX) in T2DM recipients, we evaluated whether the diabetic milieu modulates glycosylated ACE2 (GlycACE2) levels in cardiomyocytes, known to be affected by non-enzymatic glycosylation, and the relationship with glycemic control. OBJECTIVES: We investigated the possible effects of GlycACE2 on the anti-remodeling pathways of the RAS inhibitors by evaluating the levels of Angiotensin (Ang) 1-9, Ang 1-7, and Mas receptor (MasR), Nuclear-factor of activated T-cells (NFAT), and fibrosis in human hearts. METHODS: We evaluated 197 first HTX recipients (107 non-T2DM, 90 T2DM). All patients were treated with angiotensin-converting enzyme inhibitor (ACE-I) or angiotensin receptor blocker (ARB) at hospital discharge. Patients underwent clinical evaluation (metabolic status, echocardiography, coronary CT-angiography, and endomyocardial biopsies). Biopsies were used to evaluate ACE2, GlycACE2, Ang 1-9, Ang 1-7, MasR, NAFT, and fibrosis. RESULTS: GlycACE2 was higher in T2DM compared tonon-T2DM cardiomyocytes. Moreover, reduced expressions of Ang 1-9, Ang 1-7, and MasR were observed, suggesting impaired effects of RAS-inhibition in diabetic hearts. Accordingly, biopsies from T2DM recipients showed higher fibrosis than those from non-T2DM recipients. Notably, the expression of GlycACE2 in heart biopsies was strongly dependent on glycemic control, as reflected by the correlation between mean plasma HbA1c, evaluated quarterly during the 12-month follow-up, and GlycACE2 expression. CONCLUSION: Poor glycemic control, favoring GlycACE2, may attenuate the cardioprotective effects of RAS-inhibition. However, the achievement of tight glycemic control normalizes the anti-remodeling effects of RAS-inhibition. TRIAL REGISTRATION: https://clinicaltrials.gov/ NCT03546062.


Assuntos
Diabetes Mellitus , Sistema Renina-Angiotensina , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Fibrose , Hemoglobinas Glicadas/metabolismo , Humanos , Fragmentos de Peptídeos , Peptidil Dipeptidase A
18.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955595

RESUMO

Recent pharmacological research on milk whey, a byproduct of the dairy industry, has identified several therapeutic properties that could be exploited in modern medicine. In the present study, we investigated the anticancer effects of whey from Mediterranean buffalo (Bubalus bubalis) milk. The antitumour effect of delactosed milk whey (DMW) was evaluated using the HCT116 xenograft mouse model of colorectal cancer (CRC). There were no discernible differences in tumour growth between treated and untreated groups. Nevertheless, haematoxylin and eosin staining of the xenograft tissues showed clearer signs of different cell death in DMW-treated mice compared to vehicle-treated mice. Detailed biochemical and molecular biological analyses revealed that DMW was able to downregulate the protein expression levels of c-myc, phospho-Histone H3 (ser 10) and p-ERK. Moreover, DMW also activated RIPK1, RIPK3, and MLKL axis in tumour tissues from xenograft mice, thus, suggesting a necroptotic effect. The necroptotic pathway was accompanied by activation of the apoptotic pathway as revealed by increased expression of both cleaved caspase-3 and PARP-1. At the molecular level, DMW-induced cell death was also associated with (i) upregulation of SIRT3, SIRT6, and PPAR-γ and (ii) downregulation of LDHA and PPAR-α. Overall, our results unveil the potential of whey as a source of biomolecules of food origin in the clinical setting of novel strategies for the treatment of CRC.


Assuntos
Neoplasias Colorretais , Sirtuínas , Animais , Apoptose , Búfalos/metabolismo , Xenoenxertos , Humanos , Camundongos , Leite/química , Necroptose , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Sirtuínas/metabolismo , Soro do Leite/metabolismo
19.
Antioxidants (Basel) ; 11(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009329

RESUMO

Emerging evidence indicates that defects in sirtuin signaling contribute to impaired glucose and lipid metabolism, resulting in insulin resistance (IR) and endothelial dysfunction. Here, we examined the effects of palmitic acid (PA) treatment on mitochondrial sirtuins (SIRT2, SIRT3, SIRT4, and SIRT5) and oxidative homeostasis in human endothelial cells (TeloHAEC). Results showed that treatment for 48 h with PA (0.5 mM) impaired cell viability, induced loss of insulin signaling, imbalanced the oxidative status (p < 0.001), and caused negative modulation of sirtuin protein and mRNA expression, with a predominant effect on SIRT3 (p < 0.001). Restoration of SIRT3 levels by mimic transfection (SIRT3+) suppressed the PA-induced autophagy (mimic NC+PA) (p < 0.01), inflammation, and pyroptosis (p < 0.01) mediated by the NLRP3/caspase-1 axis. Moreover, the unbalanced endothelial redox state induced by PA was counteracted by the antioxidant δ-valerobetaine (δVB), which was able to upregulate protein and mRNA expression of sirtuins, reduce reactive oxygen species (ROS) accumulation, and decrease cell death. Overall, results support the central role of SIRT3 in maintaining the endothelial redox homeostasis under IR and unveil the potential of the antioxidant δVB in enhancing the defense against IR-related injuries.

20.
Pharmacol Res ; 182: 106303, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35697289

RESUMO

OBJECTIVES: We evaluated whether Angiotensin receptor/Neprilysin inhibitors (ARNI) reduce heart failure (HF) hospitalizations and deaths in cardiac resynchronization therapy with defibrillator (CRTd) non-responders patients at 12 months of follow-up, modulating microRNAs (miRs) implied in adverse cardiac remodeling. BACKGROUND: adverse cardiac remodeling characterized by left ventricle ejection fraction (LVEF) reduction, left ventricular end-systolic volume (LVESv) increase, and the 6-minute walking test (6MWT) reduction are relevant pathological mechanisms in CRTd non-responders and could be linked to changes in miRNAs (miRs), regulating cardiac fibrosis, apoptosis, and hypertrophy. METHODS: miRs levels and clinical outcomes (LVEF, cardiac deaths, and 6MWT) were evaluated at baseline and one year of follow-up in CRTd non-responders divided into ARNI-users and Non-ARNI users. RESULTS: At baseline, there were no differences in levels of inflammatory markers, miR-18, miR-145, and miR-181 (p > 0.05) between Non-ARNI users (n 106) and ARNI-users (n 312). At one year of follow-up, ARNI-users vs. Non-ARNI users showed lowest inflammatory markers (p < 0.01) and miR-181 levels (p < 0.01) and higher values of miR-18 (p < 0.01)and miR-145 (p < 0.01). At one year of follow-up, ARNI-users had a higher increase of LVEF (p < 0.01) and 6MWT (p < 0.01) along with a more significant reduction of LVESv (p < 0.01) compared to Non-ARNI users. Cox regression analysis evidenced that ARNI-based therapies increase the probability of anti-remodeling effects of CRTd. Based on symptomatic improvements, echocardiographic and functional classification improvements, 37 (34.9%) patients among ARNI-users became responders, while only twenty (6.4%) patients became responders among Non-ARNi-users. CONCLUSIONS: ARNI might influence epigenetic mechanisms modulating miRs implicated in the adverse cardiac remodeling responses to CRTd.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , MicroRNAs , Antagonistas de Receptores de Angiotensina/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Combinação de Medicamentos , Epigênese Genética , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Neprilisina/uso terapêutico , Receptores de Angiotensina/uso terapêutico , Volume Sistólico , Resultado do Tratamento , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...